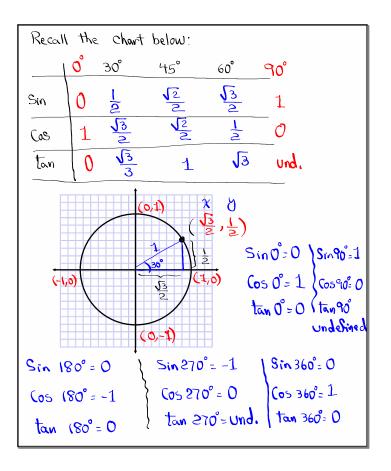
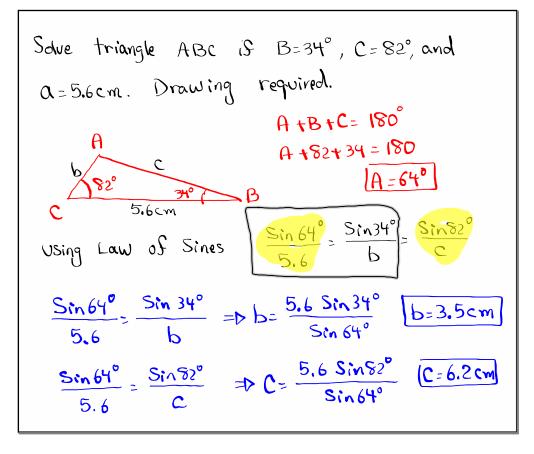
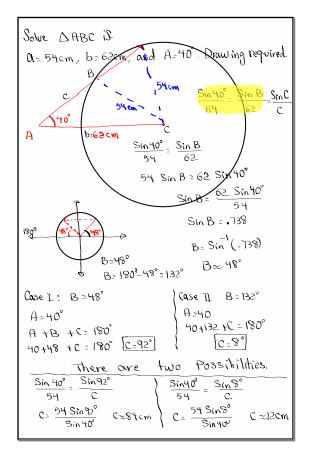


If the Central angle of a Sector is 36°
with arc length of
$$\pi$$
 cm. Drawing Required.
1) find its radius.
 $S = T \theta$ $5\pi = \pi r$
 $\pi = \Gamma \cdot \frac{\pi}{5}$ $\frac{5\pi}{5} = r \cdot P T = 5$
2) find its area.
 $A = \frac{1}{2}r^{2}\theta$
 $1 = \frac{7}{5} \cdot \frac{\pi}{5} = \frac{25\pi}{10}$
 $2 = \frac{7}{5} \cdot \frac{\pi}{5} = \frac{25\pi}{10}$
 $2 = \frac{7}{5} \cdot \frac{\pi}{5} = \frac{25\pi}{10}$
 $36^{\circ} = \frac{36\pi}{5}$ Rod.
 $36^{\circ} = \frac{36\pi}{5}$ Rod.
 $36^{\circ} = \frac{36\pi}{5}$ Rod.

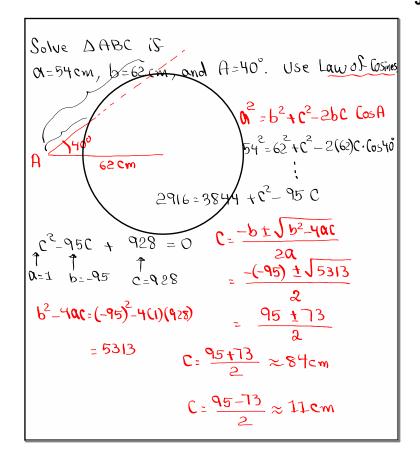



Sind the angular velocity on a circular
Path with central angle of
$$45^{\circ}$$
 in $2mins$?
 $W = \frac{\theta}{t} = \frac{\pi}{4}$
 $= \frac{\pi}{2} mins$
 $= \frac{\pi}{4} \div 2 = \frac{\pi}{4} \div \frac{2}{1}$
 $= \frac{\pi}{4} \div 2 = \frac{\pi}{4} \div \frac{2}{1}$
 $= \frac{\pi}{4} \div \frac{1}{2} = \frac{\pi}{80}$
 $W = \frac{\pi}{8}$ Rod./min.
 $W_{1} = \frac{\pi}{8}$ Rod./min.
 $W_{2} = \frac{\pi}{8}$
 $W = \frac{\pi}{8}$ Rod./min.
 $Rod./min. = \frac{\pi}{4}$
 $W_{1} = \frac{\pi}{8}$
 $W = \frac{\pi}{8}$ Rod./min.
 $Rod./min. = \frac{\pi}{4}$
 $Rod./min. = \frac{3}{8} deg/sec.$

Sind w is
$$\theta=45\pi$$
 and $t=1.2$ hrs.


$$\omega = \frac{\theta}{t} = \frac{45\pi}{1.2} = 37.5\pi \text{ Rad/hr}$$
Griven $\omega = 3\pi/2 \text{ Rad/Sec}$, $\Gamma=4m$, $t=30$ Sec.
I) Sind S $\omega = \frac{\theta}{t} = \frac{3\pi}{2} = \frac{\theta}{30}$
 $S=r\theta$ $2\theta = 30(3\pi)$
 $=4(45\pi) = 180\pi$ m $\theta = \frac{30(3\pi)}{2}$
2) Sind the area of that Sector.
 $A = \frac{1}{2}r^2\theta$ $Rad.$
 $=\frac{1}{2}\cdot4^2\cdot45\pi = 360\pi$ m²

A circular device has a radius of 3 inches, It is turning at 600 Revolutions per minute what is the linear speed of one point on the edge in Seet per minute) W= 600 Revolutions/min. = 600 (27) Rad./min. 3in = 1200 T Road./Min. ν<u>-</u> <u>s</u> t $\Rightarrow \omega = \frac{v}{r}$ $W = \frac{\Theta}{\Theta}$ $V = \Gamma W = 3 \text{ in. } 1200 \pi / \text{min} = 3600 \pi$ N= 3600π in/min. 3600 T in. 1 St te in. = 3007 St/min. 1 Min. 3007 St 1 Min what about St/sec? 1 min 60 Sec. 5万**S+/Sec.**



Solve
$$\triangle ABC$$
 is $a = 2in$, $b = 6in$, and $\Delta A = 30^{\circ}$.
Drawing Required.
 $A = 2$
 $a = 3$
 $a =$

Use law of Cosines to Solve for
$$\triangle B$$
 in
 $\triangle ABC$ if $0=2$, $b=6$, and $A=30^{\circ}$.
 $B = 2$ $b^{2} = 0^{2} + C^{2} - 2aC \cos B$
 $A = 30^{\circ}$ $b=6$ $a^{2} = b^{2} + C^{2} - 2bC \cos A$
 $a^{2} = 6^{2} + C^{2} - 2bC \cos A$
 $a^{2} = 6^{2} + C^{2} - 2bC \cos 30^{\circ}$
 $4=36 + C^{2} - 12C \cdot \sqrt{3}$
 $C^{2} - 6\sqrt{3}C + 36 - 4 = 0$
 $c^{2} - 6\sqrt{3}C + 32 = 0$
 $c^{2} - 6\sqrt{3}C + 32 = 0$
 $c = -b \pm \sqrt{b^{2} - 4aC}$
 $c = -b \pm \sqrt{b^{2} - 4aC}$
 $a = 1$ $b = -6\sqrt{3}$ $c = 32$ $(-6\sqrt{3})^{2} + (1)(32) =$
 $a = 1$ $b = -6\sqrt{3}$ $c = 32$ $(-6\sqrt{3})^{2} - 4(1)(32) =$
 $108 - 128 = -20$
 $\sqrt{-20}$ undefined
NO Such triangle

Even
$$0 = 4m$$
, $b = 6m$, and $c = 8m$
Sind one of the angles of ΔABC .
 $a^{2} = b^{2} + c^{2} - 2bc \cos A = b \cos A = \frac{b^{2} + t^{2} - a^{2}}{2bc}$
 $b^{2} = a^{2} + c^{2} - 2ac \cos B = b \cos B = \frac{a^{2} + c^{2} - b^{2}}{2ac}$
 $c^{2} = a^{2} + b^{2} - 2ab \cos C = b \cos C = \frac{a^{2} + b^{2} - c^{2}}{2ab}$
 $cos A = \frac{6^{2} + 8^{2} - 4^{2}}{2(6)(8)} = \frac{84}{96} = .875$
 $Cos A = .875$
 $A = cos^{1}(.875)$
 $A \approx 29^{\circ}$
 $Cos C = \frac{4^{2} + 8^{2} - 6^{2}}{2(4)(8)} = \frac{44}{64} = .6875$
 $B = cos^{1}(.6875)$
 $B \approx 477^{\circ}$
Let's verify that
 $A + B + C = 150^{\circ}$
 $29^{\circ} + 47^{\circ} + 104^{\circ} = 180^{\circ}$